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The use of protecting groups in synthetic carbohydrate chem
istry is unavoidable, and since esters and ethers are chemically 
different, O-acyl and O-benzyl groups are favorites for "temporary" 
and "persistent" protection,1 respectively. However, these groups 
profoundly affect the reactivity of glycosyl donors,2 and under the 
armed/disarmed rubric,3 we recently disclosed4 that these re
activity differences provided a basis for chemoselective assembly 
of oligosaccharides.5 Cyclic acetals6 such as shown in Chart I 
are also temporary1 protecting groups, and the fact that 1,3-di-
oxane or 1,3-dioxolane derivatives can be formed competitively7,8 

has made their use a mainstay of synthetic carbohydrate chem
istry.' However, in this manuscript we disclose that cyclic acetals 
profoundly affect pyranoside reactivity, thereby paving the way 
for an armed/disarmed protocol based on torsional effects, com
plementary to that disclosed earlier4 which was based on electronic 
effects.10 
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The ability to "oxidatively hydrolyze" /?-pentenyl glycosides 
(NPGs) under neutral conditions allows us to cleave the anomeric 
center without affecting other acid-sensitive functionalities,"'12 

and in the course of exploiting this potential,12 we were struck 
by the range of relative reaction rates of compounds lb-4b (Table 
I, entry a). These results suggested that it might be possible to 
use cyclic acetals not only for the traditional protecting group role 
but also to induce chemoselectivity in the formation of cyclic oxo 
carbenium ions. 

Our first requirement was to carry out a sophisticated con
formational analysis as a basis for predicting reactivity. While 
the ground-state conformations of the starting pyranosides were 
expected to be 4C| chairs, those for the oxo carbenium ions had 
to be determined. PM313 was chosen for this task, because of its 
capability to analyze both ground states and reactive intermediates. 
The C5O5-CiC2 dihedral angle (a;) is ideally 0° in oxo carbenium 
ions, and hence the conformational energies of the ions derived 
from the tetra-0-methyl glycosides la, 5a, and 7a were determined. 
The energy curves for the oxo carbenium ions derived from la, 
5a, and 7a, as determined by PM3, are parabolic with minima 
at 0°, which confirms planarity of the C5O5

+-C]C2 segments with 
perfect ir overlap. For the conformational^ restrained glucosides 
3a and 4a, the energy curves are still parabolic but the minima 
have been shifted to +20°. 

With PM3 data therefore available for both glycosides and oxo 
carbenium ions, the relative activation energies (£a) could now 
be computed,14 and these are shown in Table I. Their validity 
could be checked against known experimental rates of hydrolysis. 
Thus the computed activation energies for la, 3a, and 4a are in 
keeping with the experimental rates for oxidative hydrolysis11'12 

of lb, 3b, and 4b, respectively (Table I, entries a and b). Similarly 
the reactivity trends galacto > manno > gluco of Isbell and Frush15 

were upheld in our studies (Table I, entries c and d). 
The computed values in Table I therefore implied that aceta-

lated species such as 2, 6, and 8 should react less readily than their 
torsion-free analogues 1, 5, and 7, respectively. These predictions 
were borne out by the rates for the oxidative hydrolysis of lb/2b, 
5b/6b, and 7b/8b (Table I, entry c). The corresponding computed 
values (Table I, entry d) show how well the AA£a values predict 
these reactivity trends. 

These developments suggest a strategy for disarming glycosyl 
donors based solely on the presence of acetal protecting groups. 
Indeed it proved possible to chemospecifically couple glucosides 
lb + 2c,16 mannosides 5b + 6c, and galactosides 7b + 8c to give 
9,10, and 11, respectively,17 with no evidence for self-condensation 
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Chart I 
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Table I. Comparisons of Experimental Relative Rates of Hydrolysis 
with Computed Relative Activation Energies [E1) for Some 
Acetalated Versus Nonacetalated Glycosides 

(a) 
relative rates3 

(b)*.c 
computed 

(O 
relative ratesc 

W) 
computed 

lb 
1 

2b 
2.0 

3b 
6.6 

4b 
22.0 

l a 2a 
0.0 kcal 6.5 kcal 

glucosides 

non
acetalated acetalated 

lb 2b 
3.0 6.0 

la 2a 
5.8 kcal 12.3 kcal 

AAEa - 6.5 

3a 4a 
9.4 kcal 16.9 kcal 

mannosides 

non
acetalated 

5b 
1.5 

5a 
4.0 kcal 

AAEa 

acetalated 

6b 
10.0 

6a 
6.9 kcal 

= 2.9 

galactosides 

non
acetalated acetalated 

7b 8b 
1 8.0 

7a 8a 
0.00 kcal 6.3 kcal 

AAE3 = 6.3 

"From oxidative hydrolysis of n-pentenyl glycosides.1 '̂2 Based on 
the TLC analysis and lb being 3 h. 'For method of calculation, see 
footnote 18. 'From acid-catalyzed hydrolyses." Based on 7b being 1.0 
h. 

of the alcohol donor in any of the three cases. The absence of 
such products is undoubtedly subject to the same rationalization, 
recently advanced by us, as for the electronic armed/disarmed 
phenomenon.10 
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The above results indicate that when acetals are used as tem
porary protecting groups,' their profound effects on glycoside 
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reactivity must be taken into account. The correspondence be
tween computed and experimental values in Table I encourages 
the hope that PM3 data can be used routinely as a qualitative 
guide to determine how or whether torsional effects can be ex
ploited in an armed/disarmed sense. Further exploration of this 
methodology is underway. 

Reactions of Phenylfluorocarbene with Lithium Salts. 
Absolute Kinetics of Carbenoid Formationt 

Robert A. Moss,* Hong Fan, Ramaswamy Gurumurthy, and 
Guo-Jie Ho 

Department of Chemistry 
Rutgers, The State University of New Jersey 

New Brunswick, New Jersey 08903 

Received October 10, 1990 
Revised Manuscript Received December 18, 1990 

The noun carbenoid was offered in 1964 to describe 
"intermediates which exhibit reactions qualitatively similar to those 
of carbenes without necessarily being free divalent carbon spec
ies." ' The intermediates in question were a-halo lithium de
rivatives of toluene. Subsequently, a-halo lithium chemistry was 
broadly developed, especially by Kobrich,2 while structural features 
were elucidated by NMR.3 The chemistry of a-halo lithium 
carbenoids remains topical, with emphases on theory,4 synthesis,5 
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